首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6469篇
  免费   842篇
  国内免费   687篇
电工技术   448篇
综合类   751篇
化学工业   128篇
金属工艺   359篇
机械仪表   1382篇
建筑科学   232篇
矿业工程   170篇
能源动力   82篇
轻工业   50篇
水利工程   102篇
石油天然气   173篇
武器工业   134篇
无线电   497篇
一般工业技术   615篇
冶金工业   97篇
原子能技术   19篇
自动化技术   2759篇
  2024年   20篇
  2023年   107篇
  2022年   171篇
  2021年   182篇
  2020年   264篇
  2019年   208篇
  2018年   220篇
  2017年   233篇
  2016年   291篇
  2015年   308篇
  2014年   411篇
  2013年   436篇
  2012年   461篇
  2011年   487篇
  2010年   356篇
  2009年   378篇
  2008年   372篇
  2007年   447篇
  2006年   376篇
  2005年   382篇
  2004年   307篇
  2003年   257篇
  2002年   242篇
  2001年   179篇
  2000年   195篇
  1999年   126篇
  1998年   106篇
  1997年   110篇
  1996年   84篇
  1995年   67篇
  1994年   52篇
  1993年   30篇
  1992年   28篇
  1991年   23篇
  1990年   22篇
  1989年   21篇
  1988年   8篇
  1987年   5篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
排序方式: 共有7998条查询结果,搜索用时 15 毫秒
21.
In this article, a model reduction technique is presented to solve nonlinear multiscale parabolic problems using dynamic mode decomposition. The multiple scales and nonlinearity bring great challenges for simulating the problems. To overcome this difficulty, we develop a model reduction method for the nonlinear multiscale dynamic problems by integrating constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) with dynamic mode decomposition (DMD). CEM-GMsFEM has shown great efficiency to solve linear multiscale problems in a coarse space. However, using CEM-GMsFEM to directly solve multiscale nonlinear parabolic models involves dynamically computing the residual and the Jacobian on a fine grid. This may be very computationally expensive because the evaluation of the nonlinear term is implemented in a high-dimensional fine scale space. As a data-driven method, DMD can use observation data and give an explicit expression to accurately describe the underlying nonlinear dynamic system. To efficiently compute the multiscale nonlinear parabolic problems, we propose a CEM-DMD model reduction by combing CEM-GMsFEM and DMD. The CEM-DMD reduced model is a coarsen linear model, which avoids the nonlinear solver in the fine space. It is crucial to judiciously choose observation in DMD. Only proper observation can render an accurate DMD model. In the context of CEM-DMD, we introduce two different observations: fine scale observation and coarse scale observation. In the construction of DMD model, the coarse scale observation requires much less computation than the fine scale observation. The CEM-DMD model using the coarse scale observation gives a complete coarse model for the nonlinear multiscale dynamic systems and significantly improves the computation efficiency. To show the performance of the CEM-DMD using the different observations, we present a few numerical results for the nonlinear multiscale parabolic problems in heterogeneous porous media.  相似文献   
22.
In this study, the effect of processing parameters on surface roughness and macro surface characteristics was analyzed during the machining of Ø30 mm and 300 mm aluminum alloy AA5083 abrasive water jets. As the processing parameters (up to 10 mm min−1, 15 mm min−1, 20 mm min−1 and 25 mm min−1), abrasive flow rate (50 g min−1, 150 g min−1, 250 g min−1 and 350 g min−1), the lathe chuck rotational speed (25 min−1, 50 min−1, 75 min−1 and 100 min−1) and the nozzle approach distance (2 mm, 5 mm, 8 mm and 11 mm) were used in experiments. In experimental studies, the pump pressure (360 MPa) was used as a constant, in the form of an abrasive Garnet (100 mesh), and the nozzle diameter as 0.76 mm. According to the findings, the best results in terms of surface roughness were obtained as a result of turning speed and abrasive flow rate. When the macro surface characteristics were examined, it was found that the lathe chuck rotational speed increased, the rate of nozzle progression was low, the rate of abrasive flow was high and the nozzle approach distance was lower and the smoother surfaces were obtained.  相似文献   
23.
Turning modeling and simulation of different metallic materials using the commercially available Finite Element (FE) softwares is getting prime importance because of saving of time and money in comparison to the costly experiments. Mostly, the numerical analysis of machining process considers a purely isotropic behavior of metallic materials; however, the literature shows that the elastic crystal anisotropy is present in most of the ‘so-called’ isotropic materials. In the present work, the elastic anisotropy is incorporated in the FE simulations along with the effect of grain size. A modified Johnson-Cook ductile material model based on coupled plasticity and damage evolution has been proposed to model the cutting process. The simulation results were compared with experimental data on the turning process of Aluminum alloy (AA2024). It was found that the elastic anisotropy influences the average cutting force up to 5% as compared to the isotropic models while the effect of grain size was more pronounced up to 20%.  相似文献   
24.
This paper addresses the control design for automatic train operation of high-speed trains with protection constraints. A new resilient nonlinear gain-based feedback control approach is proposed, which is capable of guaranteeing, under some proper non-restrictive initial conditions, the protection constraints control raised by the distance-to-go (moving authority) curve and automatic train protection in practice. A new hyperbolic tangent function-based model is presented to mimic the whole operation process of high-speed trains. The proposed feedback control methods are easily implementable and computationally inexpensive because the presence of only two feedback gains guarantee satisfactory tracking performance and closed-loop stability, no adaptations of unknown parameters, function approximation of unknown nonlinearities, and attenuation of external disturbances in the proposed control strategies. Finally, rigorous proofs and comparative simulation results are given to demonstrate the effectiveness of the proposed approaches.   相似文献   
25.
As an important ceramic material, tungsten carbide (WC) is utilized as the typical mold in precision glass molding, which has replaced conventional grinding and polishing to provide a highly replicative process for mass manufacturing of optical glass components. Ultra-precision grinding, which is time consuming and has low reproducibility, is the only method to machine such WC molds to high profile accuracy. Although diamond turning is the most widely used machining method for fabrication of optical molds made of metals, diamond turning of WC is still considered challenging due to fast abrasive wear of the diamond tool caused by high brittleness and hardness of WC. Ultrasonic vibration cutting has been proven to be helpful in realizing ductile-mode machining of brittle materials, but its tool life is still not long enough to be utilized in practical diamond turning of optical WC molds. In the current study, a hybrid method is proposed to combine electrochemical processing of WC workpiece surface into the diamond turning process. Cutting tests on WC using poly-crystalline diamond tools were conducted to evaluate its effect on improvement of tool wear and surface quality. Validation cutting tests using single crystal diamond tools has proven that the proposed hybrid method is able to significantly reduce the diamond tool wear and improve the surface quality of machined ultra-fine grain WC workpiece compared to ultrasonic vibration cutting without electrochemical processing.  相似文献   
26.
This study proposes a method of constructing type II generalized angulated elements (GAEs II) Hoberman sphere mechanisms on the basis of deployment axes that intersect at one point. First, the constraint conditions for inserting n GAEs II into n deployment axes to form a loop are given. The angle constraint conditions of the deployment axes are obtained through a series of linear equations. Second, the connection conditions of two GAEs II loops that share a common deployable center are discussed. Third, a flowchart of constructing the generalized Hoberman sphere mechanism on the basis of deployment axes is provided. Finally, four generalized Hoberman sphere mechanisms based on a fully enclosed regular hexahedron, arithmetic sequence axes, orthonormal arithmetic sequence axes, and spiral-like axes are constructed in accordance with the given arrangement of deployment axes that satisfy the constraint conditions to verify the feasibility of the proposed method.  相似文献   
27.
We present an energy penalization method for isogeometric topology optimization using moving morphable components (ITO–MMC), propose an ITO–MMC with an additional bilateral or periodic symmetric constraint for symmetric structures, and then extend the proposed energy penalization method to an ITO–MMC with a symmetric constraint. The energy penalization method can solve the problems of numerical instability and convergence for the ITO–MMC and the ITO–MMC subjected to the structural symmetric constraint with asymmetric loads. Topology optimization problems of asymmetric, bilateral symmetric, and periodic symmetric structures are discussed to validate the effectiveness of the proposed energy penalization approach. Compared with the conventional ITO–MMC, the energy penalization method for the ITO–MMC can improve the convergence rate from 18.6% to 44.5% for the optimization of the asymmetric structure. For the ITO–MMC under a bilateral symmetric constraint, the proposed method can reduce the objective value by 5.6% and obtain a final optimized topology that has a clear boundary with decreased iterations. For the ITO–MMC under a periodic symmetric constraint, the proposed energy penalization method can dramatically reduce the number of iterations and obtain a speedup of more than 2.  相似文献   
28.
We present a new unsupervised algorithm to discovery and segment out common objects from multiple images. Compared with previous cosegmentation methods, our algorithm performs well even when the appearance variations in the foregrounds are more substantial than those in some areas of the backgrounds. Our algorithm mainly includes two parts: the foreground object discovery scheme and the iterative region allocation algorithm. Two terms, a region-saliency prior and a region-repeatness measure, are introduced in the foreground object discovery scheme to detect the foregrounds without any supervisory information. The iterative region allocation algorithm searches the optimal solution for the final segmentation with the constraints from a maximal spanning tree, and an effective color-based model is utilized during this process. The comparative experimental results show that the proposed algorithm matches or outperforms several previous methods on several standard datasets.  相似文献   
29.
王在玉  魏星  冯天 《辽宁化工》2014,(5):587-588,591
研究了安塞油田暂堵压裂的增产机理,提出了暂堵压裂应具备的增产前提条件。通过研究储层特性、地应力、初始裂缝形态等关键控制因素,有效地控制新裂缝的起裂和延伸。现场整体应用效果显著,创造了良好的经济和社会效益。  相似文献   
30.
屈力刚  蒋帅  杨野光  李静 《机床与液压》2023,51(15):173-177
针对复杂机电产品布线路径规划过程中存在的效率较低、可应用性差等问题,提出一种改进粒子群算法,使用栅格法对布线空间进行划分,对障碍物建模并进行方向包围盒处理。为了避免算法在迭代过程中陷入局部最优,引入非线性逐渐递减的惯性权重与异步变化的学习因子,并且将贴壁约束加入到路径规划的过程中,保证线缆在敷设时路径的合理性。最后在仿真试验中,与标准粒子群算法进行对比,验证了改进后算法的合理性与可行性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号